Produktsicherheitsverordnung
Hersteller:
Wiley-VCH GmbH
product_safety@wiley.com
Boschstr. 12
DE 69469 Weinheim
Autorenportrait
InhaltsangabePreface xv Acknowledgments xxi 1. Quantum Mechanics for Organic Chemistry 1 1.1 Approximations to the Schrödinger Equation--The Hartree-Fock Method 2 1.1.1 Nonrelativistic Mechanics 2 1.1.2 The Born-Oppenheimer Approximation 3 1.1.3 The One-Electron Wavefunction and the Hartree-Fock Method 3 1.1.4 Linear Combination of Atomic Orbitals (LCAO) Approximation 4 1.1.5 Hartree-Fock-Roothaan Procedure 5 1.1.6 Restricted Versus Unrestricted Wavefunctions 7 1.1.7 The Variational Principle 7 1.1.8 Basis Sets 8 1.1.8.1 Basis Set Superposition Error 12 1.2 Electron Correlation--Post-Hartree-Fock Methods 13 1.2.1 Configuration Interaction (CI) 14 1.2.2 Size Consistency 16 1.2.3 Perturbation Theory 16 1.2.4 Coupled-Cluster Theory 17 1.2.5 Multiconfiguration SCF (MCSCF) Theory and Complete Active Space SCF (CASSCF) Theory 18 1.2.6 Composite Energy Methods 20 1.3 Density Functional Theory (DFT) 22 1.3.1 The Exchange-Correlation Functionals: Climbing Jacob's Ladder 24 1.3.1.1 Double Hybrid Functionals 26 1.3.2 Dispersion-Corrected DFT 26 1.3.3 Functional Selection 28 1.4 Computational Approaches to Solvation 28 1.4.1 Microsolvation 28 1.4.2 Implicit Solvent Models 29 1.4.3 Hybrid Solvation Models 34 1.5 Hybrid QM/MM Methods 35 1.5.1 Molecular Mechanics 36 1.5.2 QM/MM Theory 38 1.5.3 ONIOM 39 1.6 Potential Energy Surfaces 40 1.6.1 Geometry Optimization 42 1.7 Population Analysis 45 1.7.1 Orbital-Based Population Methods 46 1.7.2 Topological Electron Density Analysis 47 1.8 Interview: Stefan Grimme 48 References 51 2. Computed Spectral Properties and Structure Identification 61 2.1 Computed Bond Lengths and Angles 61 2.2 IR Spectroscopy 62 2.3 Nuclear Magnetic Resonance 66 2.3.1 General Considerations 68 2.3.2 Scaling Chemical Shift Values 69 2.3.3 Customized Density Functionals and Basis Sets 71 2.3.4 Methods for Structure Prediction 73 2.3.5 Statistical Approaches to Computed Chemical Shifts 74 2.3.6 Computed Coupling Constants 76 2.3.7 Case Studies 77 2.3.7.1 Hexacyclinol 77 2.3.7.2 Maitotoxin 79 2.3.7.3 Vannusal B 80 2.3.7.4 Conicasterol F 81 2.3.7.5 1Adamantyl Cation 81 2.4 Optical Rotation, Optical Rotatory Dispersion, Electronic Circular Dichroism, and Vibrational Circular Dichroism 82 2.4.1 Case Studies 85 2.4.1.1 Solvent Effect 85 2.4.1.2 Chiral Solvent Imprinting 86 2.4.1.3 Plumericin and Prismatomerin 87 2.4.1.4 2,3Hexadiene 88 2.4.1.5 Multilayered Paracyclophane 89 2.4.1.6 Optical Activity of an Octaphyrin 90 2.5 Interview: Jonathan Goodman 90 References 93 3. Fundamentals of Organic Chemistry 99 3.1 Bond Dissociation Enthalpy 99 3.1.1 Case Study of BDE: Trends in the R-X BDE 102 3.2 Acidity 104 3.2.1 Case Studies of Acidity 107 3.2.1.1 Carbon Acidity of Strained Hydrocarbons 107 3.2.1.2 Origin of the Acidity of Carboxylic Acids 113 3.2.1.3 Acidity of the Amino Acids 116 3.3 Isomerism and Problems With DFT 119 3.3.1 Conformational Isomerism 119 3.3.2 Conformations of Amino Acids 121 3.3.3 Alkane Isomerism and DFT Errors 123 3.3.3.1 Chemical Consequences of Dispersion 131 3.4 Ring Strain Energy 132 3.4.1 RSE of Cyclopropane (28) and Cylcobutane (29) 138 3.5 Aromaticity 144 3.5.1 Aromatic Stabilization Energy (ASE) 145 3.5.2 Nucleus-Independent Chemical Shift (NICS) 150 3.5.3 Case Studies of Aromatic Compounds 155 3.5.3.1 [n]Annulenes 155 3.5.3.2 The Mills-Nixon Effect 166 3.5.3.3 Aromaticity Versus Strain 171 3.5.4 pipi Stacking 173 3.6 Interview: Professor Paul Von RaguéSchleyer 177 References 180 4. Pericyclic Reactions 197 4.1 The Diels-Alder Reaction 198 4.1.1 The Concerted Reaction of 1,3-Butadiene with Ethylene 199 4.1.2 The Nonconcerted Reaction of 1,3-Butadiene with Ethylene 207 4.1.3 Kinetic Isotope Effects and the Nature of the Diels-Alder Tr