Robust Recognition via Information Theoretic Learning
SpringerBriefs in Computer Science
He, Ran/Hu, Baogang/Yuan, Xiaotong et al
Erschienen am
09.09.2014, 1. Auflage 2014
Bibliografische Daten
ISBN/EAN: 9783319074153
Sprache: Englisch
Umfang: xi, 110 S., 4 s/w Illustr., 25 farbige Illustr., 1
Einband: kartoniertes Buch
Beschreibung
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
Produktsicherheitsverordnung
Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg