0

Handbook of Biomineralization

Biomimetic and Bioinspired Chemistry, Handbook of Biomineralization 2

Erschienen am 14.01.2009, 1. Auflage 2009
269,00 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783527318056
Sprache: Englisch
Umfang: XXVII, 416 S., 185 s/w Illustr., 14 farbige Illust
Einband: gebundenes Buch

Beschreibung

This first comprehensive overview of the modern aspects of biomineralization represents life and materials science at its best: Bioinspired pathways are the hot topics in many disciplines and this holds especially true for biomineralization. Here, the editors -- well-known members of associations and prestigious institutes -- have assembled an international team of renowned authors to provide first-hand research results. This second volume deals with biometic model systems in biomineralization, including the biomineral approach to bionics, bioinspired materials synthesis and bio-supported materials chemistry, encapsulation and the imaging of internal nanostructures of biominerals. An interdisciplinary must-have account, for biochemists, bioinorganic chemists, lecturers in chemistry and biochemistry, materials scientists, biologists, and solid state physicists.

Produktsicherheitsverordnung

Hersteller:
Wiley-VCH GmbH
product_safety@wiley.com
Boschstrasse 12
DE 69469 Weinheim


Autorenportrait

Edmund Bäuerlein was was born in 1932, studied chemistry in Saarbrücken, Munich, and Frankfurt (Germany) and he completed his PhD with Prof. Th. Wieland on biologically relevant hydroquinones. He then moved to the Max Planck Institute for medical research, Heidelberg (Germany), as a research group leader, completed his Habilitation at the University of Heidelberg in 1974, where he was appointed Professor in 1980. In 1984 he moved to the Max Planck Institute for Biochemistry in Munich, department membrane biochemistry, where he was research group leader. He edited two successful books about biomineralization. Peter Behrens, born in 1957, studied chemistry and did his Ph.D. at the University of Hamburg. He did his Habilitation at the University of Constance and University of California (Prof. Stucky). In 1994 he was appointed Professor for Inorganic Chemistry at the University of Munich, afterwards in Hannover. He is member of the Braunschweigische Scientific Society, President of the German Zeolite Association and member of the Board of the European Zeolite Associations and reviewer for several national and international foundations and journals. His research interests include porous materials, biomaterials, hybrid and composite materials, synthesis of materials as well as biomineralization. Matthias Epple is born in 1966, studied chemistry at the University of Braunschweig, did his Diploma and Ph. D. in physical and theoretical chemistry (Prof. Cammenga). For postdocs he moved to Prof. Berg, Univeristy of Washington, Seattle, Prof. Reller, University of Hamburg, and Sir J. M. Thomas, London. He was appointedProfessor at the University of Augsburg, Bochum and now Duisburg-Essen for Inorganic Chemistry. He received several awards, e.g. Netzsch-GEFTA Young Scientist Award, Heisenberg Grant and Heinz Maier-Leibnitz Award by the Deutsche Forschungsgemeinschaft. His research interests include the development and application of biomaterials, biomimetic crystallization, application of synchrotron-based methods, synthesis of nanoparticles and reactivity of solid compounds.

Inhalt

BIOMETIC MODEL SYSTEMS IN BIOMINERALIZATIONBiomimetic Confined Media for Silica Nanoparticle Growth (Onion Phases; Typ I Collagen)The Polyamine Silica System: A Biomimetic Model for the Biomineralization of SilicaSolid-state NMR in Biomimetic Silica Formation and Silica BiomineralizationMesocrystals: Examples of Non-classical CrystallisationModel Studies on Calcium Carbonate BiomineralizationThe Hierarchical Architecture of Nacre and its Mimetic MaterialAvian Eggshell as Template for Biomimetic Synthesis of New MaterialsBiomimetic Mineralization and Scanning Force Modulation Microscopy Studies of Self-assembled Protein FibresModel Systems for Formation and Dissolution of Calcium Phosphate MineralizationBiomimetic Formation of Magnetite NanoparticlesTHE BIOMINERAL APPROACH TO BIONICSBionic Principles to be Learned from BiomineralsBIO-INSPIRED MATERIALS SYNTHESISUsing Ice to Mimic Nacre: From Structural Applications to Artificial BoneMolecular Biomimetics: Genetically Engineered Polypeptides for Functional Materials AssemblyBio-inspired Construction of Silica Surface PatternsTemplate Surface for the Formation of Calcium Carbonate and SilicaBIO-SUPPORTED MATERIALS CHEMISTRYInorganic Preforms of Biological Origin: Shape-preserving Reactive Conversion of Biosilica Microshells (Diatoms)Organic Preforms of Biological Origin: Natural Plants Tissues as Templates for Inorganic and Zeolithic Macrostructures"Bio-casting": Biomineralized Skeletons as Templates for Macroporous StructuresPROTEIN CAGES AS SIZE-CONSTRAINED REACTION VESSELSBiomimetic Synthesis of Metal Oxides Using Ferritin, Ferritin-like Proteins and a Chemically Modified Virus (CCMV)Genetically Engineered Protein Cages for Nanomaterials SynthesisThe Tobacco Mosaic Virus as TemplateENCAPSULATIONMicroencapsulation by Silica-alginate CompositesIMAGING OF INTERNAL NANOSTRUCTURES OF BIOMINERALSEnergy-variable X-ray Diffraction with High Depth Resolution Used for Seashells AnalysisX-ray Phase Microradiography and X-ray Absorption Micro-computed Tomography, Compared in Studies of Biominerals

Weitere Artikel aus der Kategorie "Chemie/Organische Chemie"

Alle Artikel anzeigen