0

Bifurcation Dynamics of a Damped Parametric Pendulum

eBook - Synthesis Lectures on Mechanical Engineering

Erschienen am 02.12.2019, 1. Auflage 2019
39,95 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9781681736853
Sprache: Englisch
Umfang: 98 S.
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

The inherent complex dynamics of a parametrically excited pendulum is of great interest in nonlinear dynamics, which can help one better understand the complex world.

Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum is discussed. Complete bifurcation trees of periodic motions to chaos in the parametrically excited pendulum include:

period-1 motion (static equilibriums) to chaos, andperiod-𝑚 motions to chaos (𝑚 = 1, 2, ···, 6, 8, ···, 12).

The aforesaid bifurcation trees of periodic motions to chaos coexist in the same parameter ranges, which are very difficult to determine through traditional analysis. Harmonic frequency-amplitude characteristics of such bifurcation trees are also presented to show motion complexity and nonlinearity in such a parametrically excited pendulum system. The non-travelable and travelable periodic motions on the bifurcation trees are discovered. Through the bifurcation trees of travelable and non-travelable periodic motions, the travelable and non-travelable chaos in the parametrically excited pendulum can be achieved. Based on the traditional analysis, one cannot achieve the adequate solutions presented herein for periodic motions to chaos in the parametrically excited pendulum. The results in this book may cause one rethinking how to determine motion complexity in nonlinear dynamical systems.

Inhalt

PrefaceIntroductionA Semi-Analytical MethodDiscretization of a Parametric PendulumBifurcation TreesHarmonic Frequency-Amplitude CharacteristicsNon-Travelable Periodic MotionsTravelable Periodic MotionsReferencesAuthors' Biographies

Informationen zu E-Books

Bitte beachten Sie beim Kauf eines Ebooks, das sie das richtige Format wählen (EPUB oder PDF) und das eine Stornierung der Bestellung nach Anklicken des Downloadlinks nicht mehr möglich ist.