0

NMR Spectroscopy

Basic Principles, Concepts and Applications in Chemistry

Erschienen am 25.09.2013, 3. Auflage 2013
83,90 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783527330003
Sprache: Englisch
Umfang: 734 S.
Format (T/L/B): 3.5 x 24 x 17 cm
Einband: kartoniertes Buch

Beschreibung

Auch die komplett überarbeitete 3. Auflage dieses bewährten Lehrbuchs überzeugt durch Klarheit, eine didaktisch gelungene Aufbereitung des Stoffes und ein hohes Maß an Praxisbezug. Das komplexe Thema wird mit einem Mindestmaß an Mathematik erklärt - ideal für Studenten, die die Grundlagen der NMR-Spektroskopie verstehen und das Verfahren effizient und präzise anwenden möchten. Die neue Auflage ist vollständig überarbeitet und aktualisiert. So sind rund 25% der Inhalte neu, darunter auch Kapitel zur biologischen NMR-Spektroskopie sowie viele Beispiele aus der organischen Chemie. Daher stellt dieses Fachbuch auch für Studenten in Grund- und Hauptstudium verwandter Fachrichtungen wie der Biochemie, Medizinischen Chemie, Pharmazeutischen Chemie und Materialwissenschaften einen wertvollen Leitfaden dar. Außerdem findet der Leser eine Vielzahl von Übungsaufgaben mit zugehörigen Lösungen.

Produktsicherheitsverordnung

Hersteller:
Wiley-VCH GmbH
product_safety@wiley.com
Boschstrasse 12
DE 69469 Weinheim

Autorenportrait

Harald Günther studied Chemistry at the Universities of Stuttgart and Heidelberg, Germany, followed by a Postdoctoral Fellowship at Mellon Institute, Pittsburgh, USA. He then became an assistant at the Institute of Organic Chemistry at the University of Cologne, Germany, where he also completed his habilitation. He became Professor of Organic Chemistry at the University of Cologne in 1970, and at the University of Siegen, Germany, in 1978.

Leseprobe

Leseprobe

Inhalt

PREFACE   INTRODUCTION Literature Units and Constants   PART I: Basic Principles and Applications   THE PHYSICAL BASIS OF THE NUCLEAR MAGNETIC RESONANCE EXPERIMENT The Quantum Mechanical Model for the Isolated Proton Classical Description of the NMR Experiment Experimental Verification of Quantized Angular Momentum and of the Resonance Equation The NMR Experiment on Compact Matter and the Principle of the NMR Spectrometer Magnetic Properties of Nuclei beyond the Proton   THE PROTON MAGNETIC RESONANCE SPECTRA OF ORGANIC MOLECULES - CHEMICAL SHIFT AND SPIN - SPIN COUPLING The Chemical Shift Spin - Spin Coupling   GENERAL EXPERIMENTAL ASPECTS OF NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Sample Preparation and Sample Tubes Internal and External Standards; Solvent Effects Tuning the Spectrometer Increasing the Sensitivity Measurement of Spectra at Different Temperatures   PROTON CHEMICAL SHIFTS AND SPIN - SPIN COUPLING CONSTANTS AS FUNCTIONS OF STRUCTURE Origin of Proton Chemical Shifts Proton - Proton Spin - Spin Coupling and Chemical Structure   THE ANALYSIS OF HIGH-RESOLUTION NUCLEAR MAGNETIC RESONANCE SPECTRA Notation for Spin Systems Quantum Mechanical Formalism The Hamilton Operator for High-Resolution Nuclear Magnetic Resonance Spectroscopy Calculation of Individual Spin Systems   THE INFLUENCE OF MOLECULAR SYMMETRY AND CHIRALITY ON PROTON MAGNETIC RESONANCE SPECTRA Spectral Types and Structural Isomerism Influence of Chirality on the NMR Spectrum Analysis of Degenerate Spin Systems by Means of 13C Satellites and H/D Substitution   PART II: Advanced Methods and Applications   THE PHYSICAL BASIS OF THE NUCLEAR MAGNETIC RESONANCE EXPERIMENT. The NMR Signal by Pulse Excitation Relaxation Effects Pulse Fourier-Transform (FT) NMR Spectroscopy Experimental Aspects of Pulse Fourier-Transform Spectroscopy Double Resonance Experiments   TWO-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Principles of Two-Dimensional NMR Spectroscopy The Spin Echo Experiment in Modern NMR Spectroscopy Homonuclear Two-Dimensional Spin Echo Spectroscopy: Separation of the Parameters J and d for Proton NMR Spectra The COSY Experiment - Two-Dimensional 1H,1H Shift Correlations The Product Operator Formalism Phase Cycles Gradient Enhanced Spectroscopy Universal Building Blocks for Pulse Sequences Homonuclear Shift Correlation by Double Quantum Selection of AX Systems - the 2D-INADEQUATE Experiment Single-Scan 2D NMR   MORE 1D AND 2D NMR EXPERIMENTS: THE NUCLEAR OVERHAUSER EFFECT - POLARIZATION TRANSFER - SPIN LOCK EXPERIMENTS - 3D NMR The Overhauser Effect Polarization Transfer Experiments Rotating Frame Experiments Multidimensional NMR Experiments   CARBON-13 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Historical Development and the Most Important Areas of Application Experimental Aspects of Carbon-13 Nuclear Magnetic Resonance Spectroscopy Carbon-13 Chemical Shifts Carbon-13 Spin - Spin Coupling Constants Carbon-13 Spin - Lattice Relaxation Rates   SELECTED HETERONUCLEI Semimetals and Non-metals with the Exception of Hydrogen and Carbon Main Group Metals Transition Metals   INFLUENCE OF DYNAMIC EFFECTS ON NUCLEAR MAGNETIC RESONANCE SPECTRA Exchange of Protons between Positions with Different Larmor Frequencies Internal Dynamics of Organic Molecules Intermolecular Exchange Processes Line Broadening by Fast Relaxing Neighboring Nuclei   NUCLEAR MAGNETIC RESONANCE OF PARTIALLY ORIENTED MOLECULES AND SOLID STATE NMR Nuclear Magnetic Resonance of Partially Oriented Molecules High-Resolution Solid State Nuclear Magnetic Resonance Spectroscopy   SELECTED TOPICS OF NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Isotope Effects in Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy of Paramagnetic Materials Chemically Induced Dynamic Nuclear Polarization (CIDNP) Diffusion-Controlled Nuclear Magnetic Resonance Spectroscopy - DOSY Unconventional Methods for Sensitivity Enhancement - Hyperpolarization Nuclear Magnetic Resonance in Biochemistry and Medicine   INDEX